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Brett VanSteenwyk and Uy-Loi Ly *

Department of Aeronautics and Astronautics, FS-10

University of Washington, Seattle_ WA 98195

Abstract

This paper presents a reliable algorithm for the evaluation of a quadratic perfor-

mance index and its gradients with respect to the controller design parameters. The

algorithm is part of a design Mgorithm for optimal linear dynamic output-feedback

controller that minimizes a finite-time quadratic performance index. The nurnerical

scheme is particularly robust when it is applied to the control-law synthesis for sys-

tems with densely packed modes and where there is a high likelihood of encountering

degeneracies in the closed-loop eigensystem. This approach through the use of all ac-

curate Pad6 series approximation does not require the closed-loop system matrix to

be diagonalizable. The algorithm has been included in a control design package for

optimal robust low-order controllers. Usefulness of the proposed numerical algorithm

has been demonstrated using lmmerous practical design cases where degeneracies occur

frequently in the closed-loop system under an arbitrary controller design initialization

and during the numerical search.

1. Introduction

Traditional design methods in linear optimal control for continuous-time systems have been

extensively treated in recent literature [1]. Development of these control systems are usually

based on characterization of the control problem under the setting of optimization of the

two-norm of a set of controlled output responses to random disturbance inputs or initial con-

ditions. Additional consideration of design robustness is taken by formulating the problem to

include H°%norm bound constraints for a class of additive and multiplicative uncertainties

applied at the plant inputs and/or outputs. Solutions are obtained for both the state- and

output-feedback design problems and involve in the majority of cases solving an appropriate

set of algebraic Riccati equations [2,3]. Theoretical studies of these approaches have been

*The work of B. VanSteenwyk and U. Ly is supported in part. by NASA Ames Research Center under
grant contract NAG-2-691.



the major concernof researchersin the control field and major breakthrough hasbeenmade
in recentwork by Stoorvogel[4,5]. An alternate and seldomlymentioned designoption for
robust multivariable control of linear time-invariant systemsis basedon direct numerical
optimization of a quadratic performanceindex with an arbitrarily specifiedcontroller struc-
ture. We believethat carefulformulation of the designproblemunder nonlinearconstrained
optimization can beof great value in the synthesisof robust multivariable control systems.

Early work in this area have beenpublishedby Levine and Athans [6], Anderson and
Moore [7], and extensivereview of the subject wasperformed by Makila [8]. Recently, a
new look into parameter optimization to multivariable control synthesisis provided by Ly
[9]whereheuseda quadratic performancebasedon finite-time horizon. In the latter work, a
numericaloptimization techniquebasedon [10]wasused.At eachdesigniteration it. requires
a preciseevaluation of a finite-time quadratic performance index and its gradients with
respect to the designparameters. Analytical expressionshave beendevelopedto evaluate
thesequantities under the key assumptionthat the closed-loopsystembeingdiagonalizable.
This assumptionis found to be unsatisfactoryand is the causeof convergencedifficulties in
the iterative searchwhen it attempts to invert an ill-conditionned eigenvectormatrix for the
diagonalization. The work presented in this paper is to resolve this numerical difficulty and

thereby extends the results of Ly [9] for cases where the closed-loop systems are degenerate,

i.e the closed-loop system has repeated eigenvalues and the corresponding set of system

eigenvectors does not span the whole state-space of the closed-loop system.

The paper is organized as follows. Section 2 reviews the problena fornmlation for a linear

optimal control design using direct parameter optimization. Analytical expressions for the

evaluation of the quadratic cost function and its gradients with respect to the controller

design parameters are also given in section 2. The current approach to evaluate these quan-

tities are briefly reviewed in section 3. An alternate numerical scheme t"o1"tile exponential

matrix and convolution integrals involving exponential matrices is presented in section 4.

Approximation methods for the evaluation of these matrix qnantities using Pad_ series are

described in details in sections 5, 6, and 7. A design algorithm based on these numerical

solution schemes has been incorporated into a computer-aided design package described in

[9]. A simple design problem to motivate the need for a numerical algorithm that handles

degeneracies in the closed-loop system matrix is given in section 8. Optimal solutions are ob-

tained using the proposed method and the diagonalization inethod from [9]. The numerical

algorithm has also been applied to the synthesis of an active control system for the JPL large

space structure developed under the LSCL research program [16]. Results of this application

are presented in section 9. Conclusions are given in section 10.

2. Problem Formulation

In this section, we recall the problem formulation described in Ly [9] for the control synthesis

of a robust low-order controller in a linear time-invariant system. The system Pi(s) is

controlled by a constant-gain controller C(s) as depicted in Figure 1 where yi.(s) is the

controlled output vector, y_(s) the measurement output vector, wi(s) the disturbance input

vector and ui(s) the control input vector. As a consistent notation, the superscript i is used

throughout this paper to denote the system model at the iea plant condition. Note that the



controller C(s) is considered to be fixed, i.e does not vary with the design condition. It is

modelled as a linear time-invariant system of arbitrary order whose fornmlation accomodates

both a feedforward and a feedback controller structures. Robustness requirement in the

context of our problem formulation is defined under the conditions that the control system

C(s) stabilizes the plant P_(s) over a class of design conditions (i = 1, Np).

State equations describing the system model Pi(s) of Figure 1 are as follows. Notice

that, in the problem formulation, we assume without loss of generalities that all the system

states are initially acquiescent. This assumption is not restrictive since one can always

establish impulsive inputs wi(t) together with the appropriate influence matrix to represent

any state initial conditions. At the i th plant condition, the system design model is described

by equations (1)-(3) below.

State Equations:

{ _(t) = F'x'(t) + G_(t) + V_wi(t)x_(0) = 0 (1)

where x_(t) is a n x 1 plant state vector, ui(t) an m x 1 control vector, wi(t) a.n m' x 1

disturbance-input vector, F i an n x _ state matrix, G i an 7_x m control distribution matrix

and pi an n x rn' input-disturbance distribution matrix.

Measurement Equations:

i i i i
y;(t) = H._.ri(t) + D_,u (t) + D_,_,w (t) (2)

where y_(t) is a p x 1 measurement vector, HI a p x n state-to-measurement distribution

matrix, D_ a p x m control-to-measurement distribution matrix and D_, a p x m' input-
disturbance-to-measurement distribution matrix.

Criterion Equations:

i t i i i i) = + + (t) (3)

where y_(f) is a p' x 1 criterion vector, H_ a p' x n state-to-criterion distribution matrix,

D i a p' x m control-to-criterion distribution matrix and D i a p' x _)_' input-disturbance-
C%_ C it;

to-criterion distribution matrix.

For generality, the disturbances wi(t) are modeled as outputs of a linear time-invariant

system excited by either impulse inputs or white noises. In this manner, one can shape the

disturbance signals to have any deterministic responses (e.g filtered step functions, sinusoidal

functions, exponentially decayed or growing sinusoidal fnnctions, etc...) or to model stochas-

tic inputs with any given power spectral density functions. At. the i th plant condition, the

disturbance model is given by equations (4)-(5) below.

Disturbance State Equations:

{.:.i (t) ,, .i [,i <,,= (4)
c_ (0) = 0

iwhere x,,(t) is a n' x 1 disturbance state vector, 7/(t) a m' x 1 vector of either parameterized

random impulses (i.e r/(t) r/;5(t ) with E[,l_ ] 0, and ' i iT= = E[,]o% ]= Wo), or white-noise

processes r/(t) with zero mean and covariance E[rli(t)_iT(r)] = WoS(t - r). The matrix 14_

is an m' x rn' diagonal positive senti-definite matrix, F{_ an n' x 7_' state matrix of the

disturbance model and Fi_ an n' x m' input-distribution matrix.



DisturbanceOutput Equations:

wi(t) i i= H_,xw(t ) + D_,r/(t) (5)

where wi(t) is a rn' x 1 disturbance output vector, H / an m' x n' disturbance output matrix

and D i an m' x m' direct feedthrough distribution matrix.
w

State model of the controller C(s) in Figure 1 is that of a linear time-invariant system

described by equations (6)-(7) below.

Controller State Equations:

:?(t)= Az(t)+ By (t)z(0) =0 (6)

where z(t) is a r x 1 controller state vector, A a r x r state matrix of the controller and B

a 7" x p measurement-input distribution matrix.

Control Equations:

= cz(t) + Dy;(t) (7)

where ui(t) is an rn, x 1 feedback control vector, C an rn x r control-output distribution

matrix and D an rn x p direct feedthrough matrix.

For control-law synthesis, all the elements of the controller state matrices can be chosen

as design parameters and some of them can be left fixed at pre-assigned values. In addi-

tion, if needed, linear and nonlinear equality or inequality constraints can be established

among the selected design parameters in order to ensure a particular design structure. For

convenience in the derivation of the performance index and its gradients with respect to

the controller design parameters, we define a matrix Co that groups all the controller state

matrices (A, B, C, D) in one compact form as follows,

C°=[1B (p+_)

Thus, specification of the matrix Co will completely define the controller state model. Ob-

viously, for the case of a static output-feedback design (i.e the controller order r = 0), we

simply have Co = D. In Section 8, we will formulate a control design problem based on the

minimization of a performance index using the controller C(s) defined in equations (6)-(7).

To examine the entire class of H2-norm based control problems and to handle the t)rob-

lem of sensitivity to plant modeling uncertainties, we define the objective function given in

equations (9) and (10). This formulation turns out to be versatile and well-posed for the

setting of a nonlinear constrained optimization problem. However, depending on the types

of disturbance model, that is whether the disturbance outputs wi(t) are responses to impulse

or white-noise inputs, different definitions for the objective function are needed. They are

given below.

(a) For random impulse inputs 71i(t):

E [ y_T(_)Oiv_(_ ) -'_ _iT(t)12_i,li([) ] dl}

(9)



The expectation operator E[-] is over the ensemble of the random variables q_ in the param-

eterized impulse inputs r/i(t) = r/oS(t ). Control design problems formulated with the above

performance index J(tf) are often classified under the category of deterministic control.

Under this category are, for example, the familiar control problems of command tracking

control, disturbance rejection of unwanted but known external input signals, implicit and ex-

plicit model-following designs, H2-control to initial conditions and H_-control to sinusoidal

inputs.

(b) For random white-noise inputs 71i(t):

1NP [ _T iit ]J(t ) = Z WCE ,
i=1 uiT ( t l )Riui( t f )

(10)

The expectation operator E_, [-] is over the ensemble of the random processes defined in the

input variables r/i(t) for a closed-loop system destabilized by a factor cti. The destabilization

effectively adds a value cti to the diagonal elements of the closed-loop system matrix. With

the given performance index, one can address the entire class of H2-norm based control

design problems. For example, we can solve for the linear quadratic regulator design (LQ),

linear quadratic gaussian (LQG) design, loop transfer recovery (LTR),closed-loop transfer

recovery (CLTR), model reduction based on a minimization of H2-norm of the error.

Note that the performance indices given in equations (9) and (10) are eva.hlated to a

finite-time horizon tf. The use of a finite time plays a significant role in the implementation

of a reliable design algorithm for the optimum steady-state solution. It should be recognized

that the objective function is well-defined regardless of whether the feedback control-law

is stabilizing or not. Furthermore, a class of problems associated with command tracking

of neutrally stable or unstable target responses (e.g step and ramp commands, sinusoidal

trajectories) are only tractable under the setting of a finite-time objective function but not

in the confine of a steady-state objective function where t I _ ec. In practice, steady-state

results, whenever possible, are usually achieved when the terminal time tf is equal to five or

six times the slowest time constant in the closed-loop system responses.

There are other unique features, besides the concept of design to a finite terminal time t_,,

that we have incorporated into the design objective function of equations (9)-(10). First of

all, this objective function is not the usual quadratic cost function defined in traditional linear

optimal control problems. It is instead a weighted average of quadratic performance indices

evaluated over the entire set of design conditions (i = 1, Np). Different weights are assigned

to each plant condition through the scalar variable I¥_ where l_lZ_> 0. Of course, if A_ = 1,

then we recover the usual quadratic cost function for a single nomi_al design condition.

The time-weighted factor e2_'t further allows us to impose directly a stability requirement

for the closed-loop eigenvalues. Namely, when a steady-state design has been achieved and

the optimum objective function is bounded, then closed-loop system eigenvalues for the

controllable modes will have real parts less titan -a i. Finally, the weighting matrices Qi and

R i are symmetric and positive semi-definite matrices. Note that our solution approach to the

minimization of the objective function J(tf) based on nonlinear optimization does not require

the control weighting matrix R i to be positive definite. In fact, in some design problems

such as command tracking and model reduction, an objective function representing simply

the tracking or model-matching errors does not include the control term, hence R i = O.



In this section, we provide analytical expressionsfor the evaluation of the objective

function J(Q) and its gradients OJ/OCo with respect to the controller matrix Co. Details of

the derivation can be found in [9]. For simple technicality, the problem formulation assumes

that there is no implicit-loop paths within the feedback control system. Namely, the control

input ui(t) or the measurement output y_(t) should not have any direct link to itself. This
itranslates into the conditions that one of the product DD_u or D,,,D must be zero. This is not

restrictive since in practice either actuation or sensor dynamics would be incorporated into

the design models and thereby resulting in a system that satisfies the above assumption; or

one can simply reformulate an equivalent problem with a set of measurement outputs where

D_,, = 0. Let's assume without loss of generality that we have the case of DD_, = 0, then

the closed-loop system can be written in the form [9] shown in figure 2 or simply,

2"(t) : F%,'{(t) + r'ff/(t) with x'_(0 : 0 (11)

where

and

[F 'i] (n+_ +,e)x (,_+_+.')

Fi+

G'DH'

B(I+
i i

D,,,D)H,

[P'i](_+_+.,/× ,_, =

GiC

A+
i ,

BC_u6

0

=

(1"%

GiDD;_)H_,

/3(i+

G

(F' + G'DD;w)D:,,

r{o

i _D i H i ][(I + D;,,D)H; D_C (I + D,_,D, _,_, ,.,

,i _u )D **_ _ ][D_]p×,,e = [(I+D i D i D i

[H;"]_, ×(,_+,.+,_,) =

i i
[H_ + D_,DH; D_.C (D:,,DD_w + D_,,,)Hw]

With these definitions, equations (2), (3) and (7) for y;(t),y_(t

[C"],_x /,_+,'+,,') [DH_ C DD_,,,H_]

and ui(t) become

(12)

13)

14)

(15)

16)

(17)

: + D:','(O

i i D i ,,,iTi,t,y_(t) = H;ix'_(t) + (D_,DDsw + _,_,)c',.1 t.)

ui(t) = C'ia.'i(t) + DD:,oD{dli(t)

(iS)

(19)

(2o)

D i D's,,,For a well-posed 1)erformance index J(Q), product of direct feedthrough term ( _,,D +
i D iD_,_) _ in the criterion output y_(t) and the penalty weighting matrix Q' lnust be zero.

Similarly, product of tile direct feedthrough term DD]wD_, in tile control output td(t) and the

6



penalty weighting matrix R i must also be zero. Under these circumstances, the performance

index J(tf) in equations (9) and (10) can be written as,

J(O) = ,_ W_T_{L'(O)r'_ r'v} (21)

where

Li(Q) = fo' e(Y'+o'I)t

[H_TQ'H_ + CiT R, Ci]e(y,+_,g)rtd t (22)

In the derivation of the analytical gradients of the performance index d(tz) with respect

to design parameters in Co of the controller state matrices, it is convenient to express the

closed-loop system matrices in terms of Co explicitly, as suggested in [9],

i , i
F"= _ + (G;o + T2CoD,)CoH o (23)

r"= r_+ (c'io+ r_CoD{)CoD;
i i

H; i = HI + D2CoH o

(24)

(25)

where

i i

= r, CoH;

[Foi](n+,.+,,,)× (,,+,.+,_,)=
F _
0

0

o r iH_ ]
0 0 1o F,_,,

G i 0
0 I

0 0

]
D;_ai, ]I 0

0 i iDc_H_]

[G_](,,+,-+,,,)×(,,,+,.)=

i i

F D w

[r'ol/,,+,.+,,,/x: o
m' F i

IU

a, [ Hj o
[ o](p+,.)×(_+,+,,'1= L0

[Hi],,xin+,-+.'/=[nC

[DLi(P+")x "" = 0

D i 0
i ,_it

[D_](p+,.)× _..+_)= 0 0

[D_],,×_.,+,._= [o;_ o]

(26)

(27)

(28)

(29)

(30)

(3t)

(32)

(33)

(34)



[T1]m× (,,_+T)= [I 0] (35)

i001[T2](n+,+,_,)×(._+,)= 0 I (36)
0 0

[0 0 0] (37)[T3](p+_,)×(n+,+_,)= 0 I 0

It has been shown in [9] that derivative of the performance index J(t]) with respect to

the controller matrix Co (i.e OJ/OCo) can be obtained explicitly fi-om the following set of

equations,

oJ/0C =

_Np l/i/.ill l-)iTOLlli T ti i iT

i=l"ptt--2 _"c + T1 /_C )X (t])H o + (38)

(Cio + T, CoD_)T[M_(t+)Ho T + £.i(tf)I'"W;Do' iT]+

t'i_ t _F,il/ViDiYTT[Mi(tI)H_ w +,.. _ ]j , o o ](D_Co)T]}

where

xi(_l) =
(39)

fo j e (F''+_l)t F"W;F'iTe (F''+_)rt dt

£i(0 ) =
(40)

ft] ¢(F,i+oi)Tt ( H:iTQIt, J + c,iT Rcti)6(F,,+M)t dt

Mi(O) = fo'fo e('"+'_I)T(*-_)(H_'rr QH_+'i
(41)

ctiTRcti ) e(F" +cd)t [,,i I/VoZFtiT e(F"+ aI)Ta do- d_

From equations (21)-(22) and (38)-(41), evaluation of the performance index J(tf) and

its gradients OJ/OCo would require algorithms for efficient computation of the follow-

ing two types of integrals of matrix exponentials: A'(t) = Jo eA_BcC_ dr and .A,'[(t) =

f0_f0_ ea(v-_)BeCVDe E_ ds dr. In the next section, we review briefly the numerical algorithm

developed in [9] for the computation of X(t) and M(t).

3. Current Method for Evaluating 2((t) and M(t)

Previous methods for evaluating X(t) and M(t) involve basically the diagonalization of the

matrices A, C and E in the exponential fimctions. The procedure requires the determination

of the eigenvalues and eigenvectors of these matrices. It is further assumed for convenience

that similarity transforma.tions can be constructed fl"om these eigenvectors to diagonalize

the respective matrices. Namely, there exist nonsingular transformations t_ and I@ and I_s"
such that

A --- I/_4AAVA -1 , ()= tOAc..Vc71 , E-= VEAE|/"E -1 (49)

where the matrices AA, Ac and AE are diagonal. Under these assumptions one can express

for example the exponential function of CAt aS

e A_ = evAaAvA_t = l/_,eA'_l/_ -1 (43)



Usageof this decompositionin the calculation of X(t) is shown below.

j_0 tX(t) = eArBe c_ dr

(44)

where B = VAIBvc. Advantage of this approach is based on the fact that the exponential

function of a diagonal matrix is also diagonal. In this case, time integration in X(t) can be

performed directly by explicit integration of product of scalar exponential functions. The

resulting numerical algorithm is quite accurate and efficient, provided that the transforma-

tion matrices V.4 and Vc, are not ill-conditionned. A similar procedure can also be applied

to the evaluation of 3d(t), Complete discussion can be found in Appendices C and D of

[9]. However, breakdown of this algorithm will occur when the matrices A , C or E become

degenerate or near degenerate; a situation that becomes eminent when we address control

of flexible structures with densely packed modes as demonstrated in the design examples of

sections 8 and 9.

Clearly, in order to have a reliable design algorithm for optimal low-order output-feedback

control synthesis [9], one must develop a robust numerical scheme to evaluate matrix integrals

of the form shown in ,g(t) and .a//(t) for the case of a degenerate system.

4. Alternative Approaches for Solving ,V(t) and M(t)

One rather simple approach is to evaluate

_0 tx(t) =  A'BeCr , (45)

jfO t jfO v2b4(t) = c 4(V-SlBeC_Dc E_ ds dv (46)

directly using techniques based on numerical quadrature. Efficiency of numerical integration

techniques is poor; especially when it requires small integration step size for satisfactory

accuracy in the case of stiff system matrices A, C and E. Another possibility is to use sonic

types of algebraic Lyapunov equations for the solution of X(t) and ,_4(*). For example, it

can be easily shown that the matrix ,g(*) can be obtained from the solution of the following

Lyapunov equation,

AX(t) + X(t)C = [ea_BeC>] t (47)
0

Solution of equation (47) exists if A_(A) + A.i(C ) # 0. This condition will not be satisfied

in general for arbitrary system matrices A and C. Thus, from practical purposes X(t) and

likewise .Ad(t) cannot be solved from a scheme based on Lyapunov equations.

Another possible approach is based on the direct, use of exl)onential matrix. It. is well-

known [12] that convolution integrals involving matrix exponentials, as represented in the

matrices ,g(t) and 3A(t), can be derived from the matrix exponential of an augmented



matrix. It canbeshownthat the matrix ?((t) can be derived from a product of the following

matrix exponentials,

•
Thus, computation of X(t) now involves the computation of a matrix exponentiM. A simple

reliable algorithm for computing the matrix exponential is given in section 5.

In a similar fashion, one can express the matrix M(t) in terms of a submatrix of a matrix

exponential. To see this, we start from its definition

fo'J0v.M(t) = ea(_-SIBeCVDeES ds dv

= fote-As {fteAvBeCt, dv} DeES ds

=--_te-As {ftSeAvBeCVdz, }

*De E, ds

(49)

Let's perform a change of integration variable v = t - 7". We have,

M(t) = fot_:-_ {fo'-_eA(t-")BeC(t-") dl. }

,De E_ ds

= __°e:A(t-s){]it-Se-ArBe-CTdr }

,eCtDe-ECt-_)d( t _ s)e E+

= fot eAq { foq e-aT Be-Cr dr}

*e:CtDe-E_ dq cEt

= fot { ffoqeA(q-r)Bect/2e-C_ dr}

,eC't/2OeE(t-q)dq (50)

Notice that part of the integrand in equation (50) delimited by braces can be replaced by

terms involving the exponential of an augmented matrix. This follows simply from results

developed for the matrix X(t). With this substitution, we obtain

*6Ct/2Dc E(t-q) dq

A Be c't/_0_c ]}[0

10



/0 }= *[Io] exp o -c

{IA ]}[o]= [I 0 0]exp 0 -C ect/2D t 0

0 0 E I

In this section, we have shown that the matrices A'(t) and M(t) can be formulated in terms

of the solutions of some matrix exponentials. Their evaluation depends therefore strongly

on the accuracy and reliability of numerical methods for computing matrix exponential. We

will present one such algorithm in section 5. However for computationM expediency', special

consideration must also be taken to ensure the efficiency of the overall scheme when the upper

limit t is large and one of the matrices A, C or D is unstable. Also one must economize

memory requirements associated with high dimensionality of the augrnented matrix when

computing the matrix exponential. These considerations will be elaborated in sections 6

and 7 where we give precise algorithms for the computation of the matrices X(t) and .M(t)

respectively.

5. Numerical Method for the Matrix Exponential

Several numerical methods are available fox" the computation of the matrix exponential [11].

Among all these, an approximation method based on Pad(_ series is found to be satisfactory

[12]. An important component in any numerical routine for matrix exponential is the scaling

of the matrix argument prior to the series calculation. Due to the simple result that eA_ =

(eArl2) 2, a scale factor in terms of powers of two (i.e 2TM) is often used. In this scheme, one

can recover the actual value of the original matrix exponential by performing m. squarings

on the matrix exponential of the scaled naa.tl'ix. The index m is determined based on the

desired size for" the scaled matrix. In our algorithm, scaling is applied to the original matrix

until its oc-norm IIAII,_ falls below 1/2.

As mentioned above, the preferred series approximation in our computation of the matrix

exponential is the Pad6 series. Let's review some of the unique features associated with the

Pad(_ series for the case of a scalar function 5r(z). On its most basic terms, it is a rational

function of z of a preselected order that approximates the function U(z). For a given choice

of the order of the numerator (say N) and of the denominator (say M), the Taylor series

representation of this Pad6 series must match the power series representation of .7-(z) for the

first (N+M+I) terms. Namely,

IV

El=0 Ai zi (.52)

In fact, the most common form of the Pad6 series is known as the diagonal sequence where

the numerator and the denominator have the same order (i.e M = N). While it is known

that the Pad(} series for' the matrix exponential (i.e .T'(z) = e z) converges only slightly faster"

11



than the Taylor seriesfor a scalarargument,the improvementis moresignificant for matrix
argument. In the matrix case,Padd seriesinvolves computation of a numerator matrix
N'(At) and of a denominator matrix D(AI). For a diagonal Pad4 series of order N, we have

Z)(At) I ' _'2N-1)!N! 4.

*" (2N)!(N-1)!'"

(2N-2)_N_ [.4t)2 4_ ...
q- (2N)!2!(N-2)!_''_J --

(2N-O!N! (At_i .
+ (2N)!ir(N_i)!\''_J -'_-"

N! N
+

(53)

and

H(A ) = T_ (2N-IJ!N! At
" (2N)! (N-l)!

(2N-2)! N! (At}2
-{- (2N)! 2! (N_2)! v, *', ....

( .,i (2N-i)!N! _at_i
+ t-l) (2N):i!(N_i)!( _t ) +'..

N 2N_ N
+ (-1) _(At)

The matrix exponential is simply given by

(54)

eA' = D-I(At)._(At) (55)

Invertibility of D(At) is usually ensured by proper scaling of the matrix argument At.

Another important consideration in the Pa.d_ series is its length N. Assuming that the

matrix At has been scaled such that I[Atlloois less than 1/2, the parameter N can be choosen

according to [12] such that

2 < e (56)
(2N)! (2N + 1)! -

where e is a given desired tolerance for accuracy.

With a Pad_ series of N terms where N is determined from above, the a pproxinlation can

be thought of as the exact calculation of a matrix exponential for a "nearby" lnatrix ( At + E)

where E is the error matrix with I[EII_<. _< el[Atilt. The relative error of the approximation

is bounded by the following inequality,

II .A*lloo
(57)

Thus, reducing the co-norm of the matrix At would indeed improve the numerical accuracy

of the matrix exponential. It has also been shown that methods by series approximation yield

better accuracy if the matrix argument has been preconditioned. Additional improvement

may therefore be gained by first preconditiotfing the original matrix. Another immediate

benefit of lowering the oo-norm of the matrix being exponentiated is that the actual scaling

factor m needed would also be smaller; thereby resulting in a. fewer number of matrix mul-

tiplications in the squaring procedure. As usual, preconditioning a matrix tends to bring

singular values of that matrix closer together (i.e. lower the condition number), thus avoiding

situation where scaling factor is predominantly determined by a few large singular values,

and causing significant loss of precision related to the set of small singular values. The most

common method used in the precondition of a matrix is the Osborne's method [14], which

12



minimizes the Frobenius norm of that matrix (and thus indirectly lowering its oc-norm).

However, extensive tests conducted so far seems to indicate that preconditioning of a matrix

did not yield significant reduction in the cx>norm and a smaller scaling factor to justify the

added computational efforts incurred in the Osborne's method. The procedure of precondi-

tioning a matrix is nonetheless recommended from the point of view of improved accuracy

(see [I5] and[17] ).

In the implementation of our design algorithm for optimal low-order controller synthesis

[9], a value of e = 10 -s has been selected requiring therefore a 4-terms Pad6 series (i.e N = 4)

in the evaluation of the matrices xi(t), £i(t) and Ad'(t) of equations (39)-(41). Additional

considerations in the implementation of the proposed method for computing X(t) and M(t)

are given in sections 6 and 7.

6. Detailed Algorithm for Computing X(t)

As seen in the previous section, the matrix X(t) can be evaluated in terms of a matrix

exponential as shown in equation (48). Conceptually, it is a simple and straightforward

procedure to compute the matrix exponential of any arbitrary matrix using the Pad_ series

discussed in section 5. However, it becomes a nontrivial task when we try to implement an

efficient algorithm that examines carefully the issues related to accuracy, speed and memory

requirement. The basic difficulties lie in the fact that the matrix exponential is for an

augmented matrix of a particular form,

B e-A'x(t) l
cap 0 ect j

(SS)

where A = C r = F 'i + _iI according to our problem in equations (39) and (40) for the

matrices W_(tf) and £_(tf) respectively. Clearly, if the system matrix A is stable (i.e all

the eigenvalues of the matrix A have negative real parts) then one could easily encounter

numerical overflow when evaluating the term e -At even though the matrix integrals A'(i) and

Z;(t) of interest are perfectly well-behaved. The overflow problem occurs most likely in the

final squaring process. To arrive at a feasible approach in the evaluation of ,g(t), one needs

to examine in details the steps taken in arriving at the matrix exponential of the original

matrix starting from that of a scaled matrix (i.e in the squaring process).

Let's assume that one has scaled the input matrix A by AAt where At is a reasonably

small time interval given by At = t/n = t/2 "_. Thus, we need to first, evaluate

For notation convenience, we define

exp [-A B E

(59)
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Furthermore, let W = exp(AAt) = D -1. Now we can write our result as follows,

X(t) = W_[D_-IE + Dn-2EF
+D,__3EF2 + ... + EFn_,] ' (60)

or

,¥(t) = W[E + WEF + W2EF 2 +... + [4/n-'Ef'z-1]. (61)

[ ]The above results are produced by performing nz squarings of D E' 0 F and taking the

appropriate submatrix for X(*). In our application (el. equations (39)-(40)), the solution

would therefore involve products of matrices of size 2(n + r + n'). Close examination of

equation (61) leads to the following algorithm involving only product of matrices of size

(n + r + n') with the final result achievable in m steps,

Step 1 :

/91 = I¥,

Step 2 :

& = P?,

Step 111 :

p,_ 2Pm- 1

Qt = E, lgl = F

Q2 = (2, + t?'2=
1°1 Q1 R1,

O,,_ = O_-l+

Pm-l Om-l l_,,z-1,

I_r7 z 2

Finally, X(t) = WQ,_. It should be noted that one can "absorb" this extra factor of W

(= e Aat) into the matrix Q1 without any change to the above algorithm (i.e starting the

above algorithm with Qa = WE instead). This removes the need to retain the matrix W

throughout the computation.

Finally, one notes that the terms Pi or Ri for (i = 1, m) may underflow and become a

null matrix for some i; in particular when the scaling factor is large (i.e m large)• When this

situation happens, one can simply truncate the series calculation for X(t) up to the i _h step

in the above algorithm since all of the significant (and nonzero) terms have already been

accumulated into the matrix Qi.

7. Detailed Algorithm for Computing jt4(t)

Here the numerical algorithm is a bit involved compared to the one given for the calculation

of X(t). This is largely due to the increased complexity of the argument of the matrix

exponential. Following the procedure described in section 6, let's perform a scaling upon

the input matrix A by AAt such that computation of the matrix quantities .&to, H, J, P, U

and W = V -1 is well-behaved. These quantities are defined from the following matrix
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exponential,

ezp 0 -C eCt/2D At
0 0 E

= 0 V eCt/2d

0 0 U

(62)

Due to the possible numericM nnderflow in the matrix ect/2 for large t, the matrices H and

J are computed directly from the following definitions,

o_0 AtH = cA*Be c" tire -cat (63)

and

f00d = e -Cat eCrDe Er dr (64)

However, the computation of 340 in equation (62) can still underflow due to its explicit

dependence on ect/2. For the calculation of the matrix 34(t), ideally it can be obtained from

rn squarings of equation (62). If carried out in this manner, potential numerical overflow

is eminent since, according to our equation for Mi(ty) in (41), we have A T = (J = E T =

F i +aiI. Hence, if the matrix C is stable, then the matrix exponential e -ct = V '_ will

become unbounded. To bypass this difficulty, as in the calculation for X'(t), one needs to

conduct the squaring algorithm

computed as

:t4 ( t )

explicitly. It can be shown that the matrix .M(t) can be

= p,_-lMo + P'_-234oU

4- P'_-3 fl,'_o(/'2 + ... + PMoU '_-2

+ MoU '_-_
+ HI¥2 d + HI¥3j(; + PHW.ad (65)

4- PHI,V4JU + P_HW4J + ...

+ P"-2HI4,"_J

This formulation no longer involves the matrix V. The above series for ,4,t can be distin-

guished into two parts--one that contains the matrix J_o and the other that does not. The

terms involving 340 can be thought of as

which can be pertbrmed by m squarings. The remaining terms involving H, J, _I/\ P, and U

are computationally intensive and are of the form

n-2 n-2

_., piHI'V'2+_+JJUJ, where 2 + i + j _< n. (67)
i=0 j=0

This equation, owing to the restriction 2 + i +j _< n, is not easily calculated in m(= log2(n))

steps. A reasonably efficient procedure for computing the final matrix j_(t) is to merge both

the easily computed portion given in equation (66) and the more ditficult series in equation
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(67) into a sequenceof m steps, as shown in figure 3. Due to potential numerical underflow,

the term W i-2 is not accurately obtained from the product l,Vil/2 where V = l/l7-1. Indeed

one needs to recompute the term W n+2-2J at each step of the above algorithm. This could

become the major drawback of our scheme even though we have used an efficient matrix

exponentiation routine to compute W i requiring at most 2 • logs(i) matrix multiplies.

If in addition W _ is zero (or effectively so), restriction on the indices i and j of 2+i+j < n

in equation (67) becomes inconsequential; hence we can express

En-2 n-2
i=0 _j=0 PiHW2+i+'TJU5 =

(H + PHW + p2HW2 + ..-)I¥ 2

*(J + WJU + W_JU 2 + ...)

resulting in a simpler algorithm involving the following three terms:

i M ] [01(a) [I O] 0 U I

(b) (H + PHW + P2HW2 + .-. + P'_-2HI4_ .... 2)

(C) (ff n c |/lTJg -}- l¥2dU 2 -+- ... --k WT_-2ffUn-2)

This algorithm can again be computed in m steps as seen in figure 4, but now there is no

costly evaluation of a H/"k term at each step.

Further simplification of the above algorithm can be achieved if we make use of the fact

that we have A = E = C T (cf. equation (41)) and therefore U = P = W r. If, for some

index j < m, W 2' (and likewise U 2' and p2,) is zero or nearly so, then this calculation for

3A(t) is reduced to .M(t) = H315"2.]j since Mm = 0 , Hj = H,_ , and ,]j = .L,_.

In the /bllowing sections, we compare the tlsefulness of the proposed algorithm to the

early algorithm presented in [9] in the design of low-order optimal controllers for two flexible

mechanical systems .

8. A Simple Two-Mass-Spring Design Problem

Control of flexible mechanical systems has been of interest in recent years [18]. This problem

provides us a simple design case where degeneracy in the closed-loop eigensystem can be

easily illustrated. The problem is to control the displacement of the second mass by applying

a force to the first mass as shown in Figure 5. At the start, it is simple to verity: that the

basic open-loop system has a pair of degenerate eigenvalues at the origin. Equations for the

dynamic model are given below,

ml _)_= k(y,2 - _ ) + u + w

Y/?'2¢2 = ]_(_1 -- Y2)

(68)
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or

Yl
!

_d Yl

dt Y2

+

1 0

0 --]_/m 1

0 0

0 klm2
0

lira,1
0

0

0

Wml
0

-klm2

Yl

#
Yl

Y2

y;
(69)

(u + w)

where ml = m2 = kl = k2 = 1. For comparison, we have obtained an optimal second-order

controller design of the form,

[0 ,] ,=[0]A = A21 A22 ' 1

C, : [Cll (712]; D = [Dill

using both algorithms. The control design problem is to minimize the following H2-norm

of the closed-loop transfer function T.v_,_. between the disturbance w and the displacement

y2 of the second mass through the controller design parameters A.21, A22, (:11, C12 and Dll.

We start with the following arbitrary initial design guess of A21 = -2, A22 = -1, (,711 =

0, C12 = 0.5, and Oll = 0. Both algorithms converge effectively to the same optimal design

gains of A21 = -0.8571, A22 = -0.9258, Cll = 0, C12 = -0.4535 aim Dll = -0.2449 and

with an optimum value ]lTy_ll _ = 7.718,38215122. A summary of the resulting closed-loop

eigenvalues is given in Table 1. The main difference between the two algorithms is in the

CPU time for the overall computation. Results are obtained for a VAX/VMS-Workstation

DEC-3500 as follows: CPU time of 19.59scc with the algorithm based on diagonalization

and 97.36scc using the proposed method. The increase in computational load is expected

and constitutes the basic trade-off between reliability and speed of the solution algorithm.

The proposed algorithm is more reliable and with this advantage does take a bit longer in

computational tilne. With the early algorithm of [9], one cannot initiate the search for an

optimal compensator design with zero gains (i.e A21 = A22 = Cll = C12 = Dll = 0) because,

in this case, the closed-loop system would have two pairs of degenerate eigenvalues at the

origin; one tbr the rigid-body mode and the other from the open-loop compensator poles.

To alleviate this problem, it was suggested that one simply starts with any colnpensator

design (stabilizing or not) that produces initially a non-degenerate closed-loop systern. Even

with these considerations, it was found that occasionally the algorithm could break down

due to the presence of near degeneracies in the closed-loop systen_ matrix. Thus, for a

reliable design method, solution algorithm must treat degeneracies as a common occurrence.

This situation is more evident in the optimal output-feedback control design for high-oMer

structurM models with closely packed flexible modes.

Future consideration would be to develop a hybrid algorithm taking advantage of the

computational efficiency of diagonaliza.tion when the closed-loop system matrix is not de-

generate, and turning to the current algorithui when degeneracies are detected. System

degeneracy can be easily checked from the condition number of the eigenvector matrix.
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In the next section,wepresentadesignproblemwheredegeneraciesoccur frequently and
thereforeit could posea seriousdifficulty for the early designalgorithm basedon diagonal-
ization.

9. The JPL Large Space Structure Control Design

In control problems for large flexible mechanical systems such as space structures, causes of

eigenvalue degeneracies are usually more subtle in nature than the simple case presented in

section 8 for a two-mass-spring system. The JPL large space structure has been carefully

designed to simulate a lightweight, non-rigid and lightly damped structure in a weightless

environment [16]. The structure itself resembles a large antenna with a central boom-dish

apparatus and an extended dish consisted of hoop wires and 12 ribs (Figure 6). There are

two torque actuators (labelled HA1 and HA10) on the boom and dish structure to control

the two angular degrees of freedom in pointing maneuver, and force actuators at four rib

root locations (labelled RA1, RA4, RA7 and RA10) for vibration control. From the point

of view of control design, it is a challenging problem since the plant has many closely spaced

modes and is of reasonably high order. There are a total of 30 modes in the basic structural

model. The flexible modes are lightly damped with damping ratios ranging from 0.007 to

0.01. The two rigid-body modes have a damping ratio of 0.12. Our design concept is to

use two available angular displacement sensors HS1 and HS10 of the boom-dish apparatus

and the two torquers HA1 and HA10 collocated with these sensors for control synthesis.

With this selection, 20 of the flexible modes associated primarily with the rib motion become

uncontrollable and unobservable. These modes are removed by modal truncation from our

plant synthesis model. Eigenvalues of the remaining 10 modes are shown in Tab]e 2.

An optimal low-order controller is designed to dampen vibration of the antelma to exter-

nal excitations. To evaluate the effectivenes of the control system, we perform the following

test. The entire structure is agitated using the two boom-dish actuators for the first 6.4 sec-

onds with an applied torque in the form of a. square wave of 0.8 second in width and with an

amplitude of 1 N-re. The control system is then activated right after the excitation has been

removed, and responses of the excited structure at the sensors are examined. The design

objective is to damp out the induced vibration as fast as possible without excessive use of

controls. Note that the natural responses of the structure will take about a few minutes to

decay to zero (Figure 8).

For practical implementation, the controller design is choosen to be of 6 th order and has

the following form,

A

-50 0 A13 A14 A15 A16

0 -50 A23 A24 A2s A26

0 0 0 1 0 0

0 0 A43 A44 0 0

0 0 A53 A54 0 l

0 0 A63 A64 A65 A66

(70)
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B

Bll /_12

B21 B22

B31 B32

B41 B42

B51 B52

B61 B62

C = [ 50 0 0 0 00]0 500000

=[°°]oo
The first two states in the controller model serve as roll-filters, limiting the control bandwidth

to less than 50rad/sec. In the design optimization, we have a total of 28 design variables:

16 in the controller A matrix and 12 in the B matrix. The objective function for design

optimization consists of a sum of weighted H_-norms of physical response variables observed

at different location of the structure. It is of the form

J(ts) =

' Q,E + Z RjEo[ 5(tjt]Lira- i
tl-*_ (i=1 j=l

(71)

Note that the expectation operator Eo[-] is for a systeln destabilized by a. factor c_. Table

3 lists the design variables Yi and their corresponding penalty weightings Qi. Also given in

the table are the control design weightings Rj for the actuators HA1 and HA10. Responses

in the above objective function are evaluated to random disturbances of unit white-noise

spectra applied simultaneously at all the hub and rib actuators.

The design optimization begins with the following arbitrary initial guess on the controller

A

matrices A and/3,
-50 0 1 0 0 0

0 -50 0 0 1 0

0 0 0 1 0 0

0 0 -2 -i 0 0

0 0 0 0 0 1

0 0 0 0 -4 -4

B

0.1 0

0 0.1

0 0

0 1

0 0

1 0

A destabilization factor a of 0.071 was used to ensure that all the closed-loop eigenvalues

have a real part less than -0.071. The optimization fails to converge when a destabilization

factor of greater than 0.075 was selected. This difficulty seems to be in moving the modes
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at 1.68 He, under this controller configuration, implying that additional degrees of freedom

must be added to the controller structure given in equation (70).

While the optimization convergence itself took 13.5 hours on a VAX/VMS Workstation

DEC-3500, the proposed algorithm for the calculation of the objective function and its

gradients with respect to the design parameters is robust and leads to well-behaved design

convergence. The final optimal values of the A and B matrices are shown in Figure 7.

Closed-loop eigenvalues are given in Table 4. Primary improvement is seen in the increased

damping of two modes at 0.65 Hz.

Closed-loop responses of the sensor and control variables corresponding to this design are

shown in Figure 8. The controlled responses decay to zero in about 20sec after the excitation

has been removed. Notice that the control torques are within the desired limits of 1 N-m;

the results are obtained through adjustment of the control design weights /i_j in Table 3.

This design example demonstrates the usefulness of a design algorithm for robust low-order

controllers using parameter optimization, and the accompanying improvement of solution

reliability using the algorithms described in sections 6 and 7 for degenerate systems.

10. Conclusions

Numerical algorithms for computing matrix exponentials and integrals of matrix exponen-

tials have been developed to handle cases where the system matrix is degenerate. Numerical

optimization combined with the given algorithms for the evaluation of the cost function

and its gradients with respect to the controller design parameters has well-behaved conver-

gence even when the closed-loop system becomes degenerate. These algorithms have been

incorporated into a. computer-aided-design package for synthesizing optimal output-feedback

controllers. Reliability of the a.lgorithm has been demonstrated using typical design prob-

lems encountered in the control of flexible structures. Clearly this algorithm when combined

with a previous one based on diagonalization would enhance significantly the overall reliabil-

ity of the optimal design procedure for low-order controllers, thereby providing an effective

automated design environment for multivariable control synthesis.
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Figure 1" A Typical Closed-Loop System with a Feedback/Feedforward Controller

_:(t) = B(I + D,,,,D)H_ A + BC,_,C B(I + D_D)D,,_H_u z(t)
i

(r _ + G DD_)D_

Jr- B(I + O_O)O;_O x q_(t)

Figure 2: State Model of the Closed'Loop System
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Step 0 :

A/l o H J

Step 1 :

M1 = P.A'/[o + fVtoU H1 = H J1 = J

+HW_J +PHW + WJU

Step 2 :

M2 --- P2:'vtl + ./_1 U2 //.2 = H1 J2 --- J1

+Hi W'_- 2J1 +P2Hj I4,'7 +H72J1U2

Step 3 :

•A/[3 = P4.A"{2 + f_2 _f4 //3 ----- H2 J3 -- ,]2

+ H2 W _-6 J 2 + p4 H2 W 4 AF _/V 4 J2 U4

Step j :

Mj = P2J-'._/Ij-1 + ]F/j-1(72J-'

+Hj-IW n+2-2'Jj-1

Step m :

M,n = P't/2Mn_-I + _/ltt_-l( [_/2

-q-Hm_l W2Jm_l

M(t) =

H) _ H3-- 1

+p 2_-_ HS_114/2'-1

Hr. -- H.__ ]

+ pn/2 Hm_ 1I/Vn/2

+ W2_-_ J2-1 _/'2'J-1

J_n _ Jnz- 1

"71-W'_/2 J,n-1 _ [ ,,/2

P

p2

8 4

p8

p2:

p?_

U

U-2

t[;'t

_/2J

_r,[ lz

H!

_/_/r 2

_4

Ws

H72 3

_/_f 7z

Figure 3: An 71_-Step C&lcula,tion of jt4(t)
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Step 0 :

Mo

Step 1 :

"/_1 = P./_o Av d_o ([

Step 2 •

X42 = P2 fi4, + .£4_t; 2

Step 3 :

.£43 = P4M2 + fi42U 4

Step j •

d_j = p2,-',_j_l

+:_j-1 U 2J-1

Step m :

d_m = Pn/2./_m-1

_i- /_m_l Un/2

M = _,,_ + Hm W2Jm

H

H1 =H

+PHW

H 2 = H 1

+ p2 H 1|,V2

H 3 = H 2

+p4H2H,,"4

Hj = Hi_ 1

+ p2,-1 H j_ 11,112'-1

Hm = H.__ 1

+Pn/2/4 , I,V,U2

J

J1 :J

+WJU

<]3= J2

+W4J2U 4

_ ": Jj--1

+ |'1"'2'-' Jj- 1U '2J-1

Jm = Jm-1

+ I4I _/_ J., - 1(;_/2

U'

V 2

W 4

U 8

U _

P

p2

p4

p8

p2_

?l

W 2

_V ,t

14I8

I/il/r2'

Figure 4: A Simplified m-Step Calculation of :kl(t)
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u,w 1 k

Mass 1 _ Mass2

Figure 5: A Two-Mass-Spring Mass System

Eigenvalue Damping Freq (Hz)

-0.2290 _ 0.3397i 0.559 0.0652

-0.1553 ± 0.8480i 0.180 0.1372

-0.0786 ± 1.2950i 0.061 0.2065

Table 1" Closed-Loop Eigenvalues of tile Two-Mass-Spring System

Eigenvalue Damping Freq (Hz)

-0.09500 ± 0.7860i

-0.08575 ± 0.7093i

-0.02802 _ 4.0024i

-0.02929 ± 4.1844i

-0.07405 ± 10.583i

-0.07405 ± 10.583i

-0.11310 ± 10.616i

-0.11785 _ 16.384i

-0.21365 ± 30.520i

-0.21365 ± 30.520i

0.120

0.120

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.007

0.12600

0.1:3704

0.63701

0.66598

1.68434

1.68434

2.57123

2.67929

4.85749

4.85749

Table '2' Open-Loop Modes of the Antenna Structure
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Variable Qi Description

RS'I 4100 Rib #1 root velocity

R_q'4 3950 Rib #4 root velocity

RS7 3975 Rib #7 root velocity

R_dl0 4050 Rib #10 root velocity

H_I 16500 Hub angular velocity

HS'10 15600 Hub angular velocity

RS1 1100 Rib #1 root displacement

RS4 1050 Rib #4 root displacement

RS7 1150 Rib #7 root displazement

RS10 1025 Rib #10 root displacement

HS1 3900 Hub angular displacement

HS10 4100 Hub angular displacement

Variable Ri Description

HA1 41 Hub torque actuator

HA10 40 Hub torque actuator

Tal)le 3: Design Variables for JPL Antenna Structure

Eigenvalue Damping Freq (Hz)

-0.086899 + 0.6588i

-0.089071 + 0.7410i

-0,3165 + 3,624i

-0.2528 + 3.790i

-0.2162 + 4.112i

-0.2056 + 4.185i

-0.074193 + 10.58i

-0.074589 + 10.58i

-0.1168 + 16.15i

-0.1253 + 16.83i

-0.2142 + 30.52i

-0.2143 + 30.52i

-49.99

-49.99

0.1308

0.1193

0.0870

0.0666

0.0525

0.0491

0.0070

0.0070

0.0072

0.0074

0.0070

0.0070

1,000

1.000

0.1058

0.1188

0.5790

0.6045

0.6553

0.6669

1.684

1.684

2.570

2.678

4.857

4.857

7.956

7.956

Table 4: Boom-Dish-Controller Closed-Loop Modes
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DESIGN CHALLENGES FOR THE UH-60 ROTOCRAFT

Brett VanSteenwyk and Uy-Loi Ly *

Department of Aeronautics and Astronautics, FS-10

University of Washington

Seattle, WA 98195

Abstract

High performance rotocraft controller design is characterized by having to compensate both
lateral and longitudinal dynamics ill a single controller design. Rather than have these modes

largely decoupled in the natural state, often one needs to incorporate mode decoupling as a
part of the controller design, especially with the modelling of higher frequency dynamics. There

exists the usual concerns of stabilizing the behavior without excessive actuator output, however,

in a high performance rotocraft such as the UH-60, good response bandwidth is as important

as stabilization and decoupling.

1 Introduction

The challenge is to develop a. stabilizing output feedback controller using a 23 state model to

simulate the UH-60 rotocraft in the hover flight condition. The essence of this challenge is to

develop with a consistent set of techniques that allow a design to meet or surpass flight criteria. In

addition to a stabilizing and decoupling controller, command following on ¢ (pitch), 0 (roll), r (yaw

rate), and w (vertical rate) is required. Sensor outputs include these terms, along with pitch and

roll rates, and the forward and transverse velocities (8 sensor inputs total). Optionally, one could

control the yaw angle (heading) instead of the rate--this issue is not a fundamental one insofar as a

design approach is concerned. Techniques for designing controllers operating with heading should

not be distinguished from those operating on yaw rate.

The UH-60 rotocraft open loop model in the hover flight condition is mildly unstable (see

Table 1). The pair of unstable poles represent a phugoid-like response in the front/side velocity

coupling in with the pitch/roll. In addition, there are modes that are either pure integrating (yaw

from yaw rate, for instance), or are near integrating (roll). The sensor output of the model consists

of the angular rates p, q, and r, corresponding to the angles 0 (pitch), _ (roll), and t/, (yaw) which

are also considered part of the sensor output. In addition, the translational velocities u, v, and w

are considered sensed.

There are 4 actuator inputs: 60, 6,, _,:, and 5TR. These stand for the collective (main rotor),

the main rotor sine, main rotor cosine, and tail rotor pitch inputs, respectively. The response of the

UH-60 to a unit collective pulse is shown in figure 1. These graphs give one a sense of the scaling

and sensitivity of the various inputs and output terms.

*The work of B. VanSteenwyk and U. Ly is supported in part by NASA Ames Research Center under grant
contract NAG-2-691.
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Eigenvalues Damping Freq (rad/sec)

-9.38957 ± 51.2473i

-5.74275 ± 37.1461i

-8.62407 ± 24.4863i

-24.5088 ± 2.90336i

-4.22353 ± 19.6367i

-19.3508

-5.71403 ± 5.43266i

-3.26916 ± 4.26280i

-4.82826

-1.35460

0.229236 ± 0.428933i

-0.135879 ± 0.526819i

-0.230418 ± 0.011000i

0.00000

0.180

0.153

0.332

0.993

0.210

1.000

0.725

0.609

1.000

1.000

-0.471

0.250

0.999

0.000

52.1003

37.5873

25.9606

24.6801

20.0858

19.3508

7.88441

5.37205

4.82826

1.35460

0.486346

0.54406

0.23068

0.00000

Table 1: Open Loop Eigenvalues of UH-60 Rotocraft

2 Basic LQ Design

What are the limits of full state feedback? Although full state LQ is not always the most satisfactory

design technique, in an ideal circumstance it can define the limits of a stabilizing output feedback

controller. Suppose one defines the control penalty inatrix as the identity and focuses on the most

effective output variables to penalize. In addition, there is the issue of controlling yaw rate, or

the yaw (heading) itself. Unless noted otherwise, yaw rate is the controlled quantity (this will not

change the basic conclusions).
We initially try blindly to penalize all outputs to try to stabilize the system. Given a stabilized

system, a feedforward matrix is constructed to try to input commands. It quickly becomes clear

that the quality of command response to pitch and roll commands drops if one is trying to stabilize

the u and v responses. This seems physically reasonable (pitch forward to increase forward velocity,

and so on). Given an R of I, it seems that increasing the response weighting Q will not change

the least stable eigenvalues much-they go from -0.71278 4- 0.2257i to -0.71289 ± 0.2251i when Q

is raised from 10"I to 1000"I. A full listing of the eigenvalues of the closed loop system is given

in Table 2 for the case where Q=10*I. Although the slowest poles are not that slow, one has an

essentially degenerate pair, and thus one has their persistent behavior. It is unfortunate that they

do not move with increasing Q.
It turns out that one can control pitch and ,'oll directly, and thus the ground velocities u and

v as a consequence, or one can control the ground velocities with pitch and roll control derived

froln this. Since pitch and roll are more desired as directly commanded, and it is more reasonable

to use these to control ground velocities. The penalty weighting on u and v is dropped. The

resulting optimization produces a set of stabilized plant eigenvalues that have worse modes than

before; however, it seems that these modes stay" nmch less disturbable and observable from the

commanded states. Increasing Q reduces the interaction with these poles without changing their

values-they become more exclusively associated with the u and v states, and less with the other

responses. Even so, as seen in tile command responses, there is some "hangotY' even when the

nominal diagonal entries for Q (except u and v) are 100,000 (see Table 3). Another way of viewing

this hangoff is to observe Bode plots of pitch relative to pitch command, etc. (See figures 3 and 4)

With the zero frequency dropoff in amplitude of response, one would see the dynamics manifested
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Figure 2: Basic LQ Full State Design Approach

Table 2: Closed

Eigenvalues Damping

-33.3483 + 48.5324i

-10.9609 -4- 53.7911i

-41.2844

-12.3645 -t- 28.4117i

-2.97880 + 17.3773i

-29.3151

-23.0359 + 4.57704

-18.4648

-9.25176 + 5.21430

-11.4372

-9.81321

-5.15694 :t= 3.57155i

-0.72756 4- 0.17456i

-0.71278 + 0.22572i

Freq (rad/sec)

0.566 58.8855

0.200 54.8964

1.000 41.2844

0.399 30.9856

0.169 17.6308

1.O00 29.3151

0.981 23.4862

1.000 18.4648

0.871 10.6200

1.000 11.4372

1.000 9.81321

0.822 6.27295

0.972 0.74821

0.953 0.74767

Loop Eigenvalues of UH-60 Rotocraft, All Output Penalty, Q = 10"I



Poles Damping Freq(rad/sec)
-4558.04
-1537.43
-560.935
-104.625 + 88.1763i

-89.8398

-74.8621 + 22.1033i

-11.5621 4- 53.4352i

-29.4031

-28.8883

-2.57737 + 17.1876i

-10.6260

-10.2186 4- 0.749891i

-4.75180 + 5.70887i

-1.0:3407

-1.00059

-0.965363

-3.98898e-003 + 6.71659e-003i

1.000

1.000

1.000

0.765

1.000

0.959

0.211

1.000

1.000

0.148

1.000

0.997

0.640

1.000

1.000

1.000

0.511

4558.04

1537.43

560.935

136.826

89.8398

78.0570

54.6718

29.4031

28.8883

17.3798

10.6260

10.2461

7.42770

1.03407

1.00059

0.965363

7.81182e-003

Table 3: Poles in LQ Stabilized UH-60 Rotocraft System, Q=I00,000
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Figure 4: Bode Plot of Roll/Roll Command Response, LQ for Q=100,000

in a hangoff. Note that this problem is _ot very severe for the yaw and up rate commands, though

noticeable.

A ready conclusion was formed-something other than straight penalty on the command outputs

was needed. To get decent results, the vahte of Q (and subsequent actuator activity) had to be

stratospheric. There were still minor, but: noticeable, hangoffs in the commanded outputs even at

values of 100000.

Note the following meaning with u and v being nearly integral poles. It simply provides for

their control via pitch and roll commands. T.'o attain a. desired forward velocity 'u, one would pitch

forward, allowing the rate to ran-q) up to a desired value, then pitch level again. It would seem

intuitive, then, that it is impossible to regulate the set: [u, v, q_,0] a.s a whole. It would also seem

that the existance of near-integrator poles for u and v is desira.ble.

a LQ Design with Integral Control on Pitch and Roll

A ready solution to relieve the hangoff in a command response is to put an integral control state

on it. Although for the purpose of synthesis we put the integrators in the plant, in reality they are

more states in the controller. Thus any practical implementation will have to contend with these

additional states in the controller and the additional numerical challenges they provide. Addition-

ally, integral control is associated with lower bandwith, and thus is to be avoided if possible. It

seemed that the pitch and roll COlnmands had the worse of the haugoff problems, so integral control

was applied for these commands. In addition, in the interest of eliminating another integrator, the

heading state was not included (that the pilot controls heading via yaw rate commands).

The resulting system had 25 states: 23 model states, and 2 integrator states. The existance of

integral states allowed the blending of proportional, integral, and derivative states for both pitch

and roll to form zero locations that would serve as closed loop system pole attractors. In a frequency



Wcmd

UH-60 Plant

0cmd

I< /

X

Figure 5: LQ Full State Design with Two Integral Controls

domain sense, one had:

al*/ZXO+a2*AO+a3*O= 0 ( )-- * al q- a2S -4- a3 S2

S

To keep the scaling relative to the error constant, one should leave (12 (the proportional term) as 1.

Thus, al and a3 need to be adjusted so that the zeros associated with this criterion (l)enalty) will

be at desired locations. For the pitch criterion, al = 1, a2 = 1, and as = 0.25. For the roll criterion,

al = 1, a2 = 1, and aa = 0.2. For Q = diag[1,0.1,1.6,2] (0, ¢, ,', and w), and R = diag[10,1,1,1]

(6o, 6s, _c, and 6TR), one achieved very satisfactory results, revealed in part by the behavior of the

eigenvalues (see table 4). The Bode and time series responses tell the rest of the story (figures 6 to

13).

4 Loop Transfer Recovery

Given the selection of LQ design as the basic approach for the full state case, the use of LTR

to select appropriate observer dynamics (full or reduced order) largely presunles all existing set.

of feedback gains. The degrees of fi'eedom reside with the estimator portion (be it. full state or

otherwise). The preferred norms and criteria for recovering the full state performance from an

output feedback controller should be kept consistent. Thus, since we have started by using H2, we

shall continue to do so.



Poles Damping Freq (rad/sec)

-9.38043 ± 51.2638i

-6.11002 ± 37.2574i

-8.72514 ± 24.6011i

-24.5081 ± 2.91104i

-4.20761 ± 19.5369i

-19.3829

-5.98385 ± 5.24203i

-3.75254 ± 4.67419i

-6.51433

-4.65048

-1.87052 ± 1.37995i

-1.48464 ± 0.60051i

-1.70573 ± 0.10905i

-3.98898e-003 ± 6.71659e-003i

0.180

0.162

0.334

0.993

0.211

1.000

0.752

0.626

1.000

1.000

0.805

0.927

0.998

0.511

52.1149

37.7550

26.1025

24.6804

19.9849

19.3829

7.95521

5.99413

6.51433

4.65048

2.32446

1.60149

1.70922

7.81182e-003

Table 4: Poles for 2 Integral LQ Stabilized System
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The premise of CLTR is simple. Assume tile system:

;i' = Aa: + BlW + B2tt (dynamics)

z = C'lx + /Jnu-, + D12u (criteria)

y = C2x + D21w + D22u (sensors)

where w is the command/disturbance input and u is the control input. A state feedback matrix

F is found that gives the system desired properties. Since state feedback represents only the

achievable, but not the actual performance due to noise and limited sensor output, the focus is to

add dynamics to synthesize individual or combinations of the necessary states. Within the context

of this problem, the disturbance input tv is the commanded output (pitch roll, yaw, or vertical

velocity), with u remaining as the full set of actuator controls. The objective is to minimize the

difference in criteria responses to disturbance (command) inputs for the full state versus output

r_edba& systems (see [4]):

This is generally approached by minimizing IlMs(s)llz in Ricatti-based methods, while the error

function itself can be minimized using direct optimization schemes.

In addition, the direct, optimization does allow one to alter some of the state feedback gains.

In this case, it was initially held that those states associated with 4) alid 0 and their error integrals

are held constant as these nominally would not be affected by changes in the rest of the controller.

However, for the states associated with the rest of the outputs (p, q, r, u, v, and w), the gains

of the feedback matrix are allowed to float. Although the integrators on the command error are

treated as part of the plant here, it is understood that they will be a part of the controller. The

formal numerical approach induces one to leave it as part of the plant during the design process so

as to use the full state feedback matrix as is.

10
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5 Output Feedback Designs from CLTR: The 2 Integral State

System

These arise by starting with tile full state feedback matrix (or relevant parts thereof) and moving

to reduce the error difference between the trial output feedback system and the baseline design

produced in Section 3. What results can one expect? Looking at the S.C.B. [3] of tile basic

plant from the control input to the lneasured output, we find that it is left. invertible and include

4 infinite zeros. There are no invariant zeros. The infinite zeros are probably from tile integral

control states and combinations of u, v, pitch, and roll. Note that the original state feedback matrix

K is preferable for constructing a command feedforward for r and u,. While exact recovery is not

possible due to some infinite zeros, asymptotic recovery is. The results from the full order and

reduced order observer designs are expected to be good. Not much else offhand can be said for the

general compensators.

5.1 LTR Design I: Full Order Observer Design

In regards to reducing this error,

T_,(s)Mj(s) = ZS(s ) = 7_{.(s) - To_,(._),

one can compute the error Mi(s) directly in terms of the plant matrices and the estimator matrices:
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Plant Structure

= Ax+Blw+B2u ]

z = Clx q- DllW q- D12u

y = C2x+D21w+D22u

With K is the unknown estimator gain matrix,

Observer Structure

= (A - KC2)x + B2u + Ky

u = - F

F(sI - A + KC2)-I(B1 - KD21)

c'T KT)-I F(BT- D iI< )(sI- J r + 2
This corresponds to a dual system:

AT:_ + CTu + Frw

B_I x + DT21u where:

_KT_

Minimizing z above in an H2 sense with respect to /,-T is most easily performed through LQ. This

is in general a problem with coupled weighting between the states a' and controls u, and is usually

singular.

I, _ _ dt = l, [,r _] d_D2I*BT o,,, ,,

The issue is to deal with the singular part of D21 *DT1. If one does the Singular Value Decomposition

on D21 :

D21 ---' UD_DVTD D21* D2TI = UDP_DeTD UT

where:

o

EDE_ = 0 •..

, ,

0

One rnust supplement tile singular part of this n-tatrlx

2 • 0
O'rZ ..

0

with a small lnagnitude matrix. The singular

part, in practice, is usually not well defined: the singularity is usually relative to the maximuln

singular value, not just an element being zero. Suppose one chooses an e equal to 0.000001 * cr2. If

2 for some m then the matrix to add to D21 * D_I would be:this magnitude is greater than o"m

0'000001 * °'_ * UD * [ [0](m- 1)x(m-l,0 [I]0] @,

One examines the asymptotic properties as e -- 0. If the open loop system can recover tile state

feedback properties exactly, then the gain matrix I( T will converge. If not, usually some of these

gains will approach infinity.

For this design, K will not converge as e goes to 0. What was done here was to observe the

recovery error as a function of e and figure a tradeoff between decrease in error and increase in

controller activity. It became simpler than that. when it was observed that the response to the yaw

rate and vertical rate commands became worse at a point• Tills seemed to correspond to where

the recovery error no longer improved a great deal with decreasing e (the responses t,o the pitch

and roll comlnands were still improving at this point). A value at 0•0025 was settled upon. The

following shows the recovery error for some values of ¢.
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e Recovery Error
0.01

0.005

0.0025

0.00125

0.58031

0.48800

0.44232

0.43586

The resulting eigenvalues for the chosen design are in Table 5. These tend not to be very sensitive

to tile value of E chosen and hence do not tell very much. What does tell a lot is a plot of the

-251.746

-33.5097

-10.1434

-9.38043

-46.5182

-6.11002

-10.4599

-8.72514

-5.92371

-4.20761

-24.4609

-24.5081

-19.3829

-20.0000

-20.0000

-11.1077

-5.98385

-3.84041

-3.75254

-6.51433

-3.56047

-4.70424
-4.65048

-1.87052

-1.48464

-1.70573

-0.16'719

-0.23179

-1.28631

-4.26079e-3

Poles Damping Freq (rad/sec)

1.000 251.746

+ 49,0920i

:i: 52,6143i

+ 51,2638i

± 37.2574i

± 27.1390i

± 24.6011i

± 19.6943i

0.564

0.189

0.180

1.000

0.162

0.360

0.334

0.288

59.4384

53.5832

52.1149

46.5182

37.7550

29.0849

26.1025

20.5659

± 19.5369i

± 3.59786i

± 2.91104i

± 5.24203i

± 5.56737i

± 4.67419i

+ 3.39555i

± 1.37995i

± 0.60051i

± 0.10905i

± 0.49056i

± 0.41152i

± 6.65864e-3i

0.211

0.989

0.993

1.000

1.000

1.000

1.000

0.752

0.568

0.626

1.000

0.724

1.000

1.000

0.805

0.927

0.998

0.323

0.491

1.000

0.539

19.9849
24.7241

24.6804

19.3829
20.0000

20.0000

11.1077

7.95521

6.76345

5.99413

6.51433

4.92003

4.70424

4.65048

2.32446

1.60149

1.70922

0.51827

0.47231

1.28631

7.90518e-3

Table 5: Full Order Observer Design Eigenvalues, 2 Integral Control

maximum singular value of both the controller activity and of the error with l'espect t.o frequency.

These are shown for the various values of E in figures 1,5 and 16.

The design does not end here. Note that this recovery process operates on a matrix M,

not the actual recovery error. Perhaps much of the controller activity has gone into regulating

high frequency components of the error that will not pass through the plant anyway (remember:

Ey(s ) = Tz_(s)My(s)) Suppose one can augment, tam t.rallsposed syst.em associated with M to

17
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reduce weighting of the subsequent LQ process on the higher frequency components. Thus, the

recovery design will do better at the low frequency end at the expense of the high fl'equency end.

Intuition would indicate that putting the corners of these first order filters on the outputs a.t 8 ra.-

dians/s for the pitch and roll components and 4 radians/s on the yaw rate and up rate components

would make sense. Actually, some testing was done, and a corner of 0.5 radians/s was used for all

filters. Because of this, weighting for more controller activity (lower values of e) were called for.

Some overall results can be summarized as follows:

e Recovery Error

0.0001

0.00001

0.000001

0.0000001

0.3629

0.2777

0.2746

0.4136

Poles Damping Freq (tad/see)

-208.040

-114.649

-47.6094 ± 52.9427i

-10.3964 ± 52.4826i

-9.38043 ± 51.2638i

-62.2535

-62.2535

-6.11002 ± 37.2574i

-13.5964 ± 27.2780i

-8.72514 ± 24.6011i

-4.20761 ± 19.5369i

-7.14504 ± 18.1857i

-24.5250 ± 3.77065i

-24.5081 ± 2.91104i

-19.3829

-12.0730

-5.98385 ± 5.24203i

-3.19825 ± 6.34656i

-3.75254 ± 4.67419i

-6.51433

-3.96063 ± 2.27644i

-4.88859

-4.65048

-1.87052 ± 1.37995i

-1.48464 ± 0.60051i

-1.70573 ± 0.10905i

-0.66682 ± 0.39932i

-0.23421 ± 0.46426i

-1.39861

-4.26079e-3 ± 0.65864e-3i

1.000

1.000

0.669

0.194

0.180

1.000

1.000

0.162

0.446

0.334

0.211

0.366

0.988

0.993

1.000

1.000

0.752

0.450

0.626

1.000

0.867

1.000

1.000

0.805
0.927

0.998

0.858

0.450

1.000

0.539

208O40

114.649

71.2010

53.5025

52.1149

62.2535

62.2535

37.7550

30.4788

26.1025

19.9849

19.5390

24.8131

24.6804

19.3829

12.0730

7.95521

7.10687

5.99413

6.51433

4.56823

4.88859

4.65048

2.32446

1.60149

1.70922

0.77724

0.51999

1.39851

7.90518e-3

Table 6: Full Order Observer Recovery, 2 Integral Control, Weighted
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As onecansee,this designis muchmorefavorable.Theerrorsat higherfrequenciesfor My are not

significant in the overall error. Note that now there is a definite mininmm at 0.000001 (the chosen

Q. The eigenvalues are seen in table 6, with plots of the recovery error and controller activity as

seen in figures 17 and 18.
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Figure 17: Recovery Error, Shaped Full Order

5.2 LTR Design II: Reduced Order Observer Design

If one were to reconstruct all the states assuming that, the measurements were relatively noise-flee,

then a Luenberger Observer with a minimal number of estimated states would be appropriate. The

variables: p, q,r,u,v,w, 0, and 0 are all assumed to be measured (along with the integrals of ¢

and 0), and the remaining 15 states, those of inflow, lag and flap, had to be estimated or otherwise

accounted for. Thus, in the general forln for the Luenberger Observer:

i; = Lv + GIy -t- G2u

X = Pv + dY

u = -F_

with:

QA- LQ = G1C2, Gz = QB2, and: .JC2 + PQ = 123.

A clever set of transformations exists that will move this problem into the form of a full order

observer and a corresponding dual system (see [4], section 4.2). Fortunately for this problem,

little has to be done to achieve this form. The direct feedthrough term from the controls to tale

sensor output is assumed zero. The first step involves a transformation of the original system.

The measured outputs become states (unless there is a direct feedthrough from the disturbances to
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Figure 18: Controller Activity, Shaped Full Order

them). The rest of the states along with the direct feedthrough terms form the rest of the system:

Original System:

' ! _lTdl I !x = + B lw + B2u
t t

Z = C"117 t + Dll/LI + D12u

D21 wy = L21? +

becollles:

;i'l = All A12 at1 + w +

J;2 A21 .422 172 B1,2 B2,2

" -- C'I x + DllW + D12 u

,2,02 171 _[_ lt_

Yl ]p-too 0 172 0

The UH60 system has neither a D21 nor a D22 term, so the *2 states are soley represented by' the

non-output states. Needless to say, ('2,02 iS non-existant (as is Y0), and no transformation on the

state variables is needed since the existing outputs are states already. Defining a.n observer gain

matrix K,., with partitions [K,.0, K,.1] corresponding to [Y0, g_], a few more transformations will

yield the Luenberger form:

First define:

Aor - A22 - KroC2,02 - K, l A12

The n:

i; = Aor u + (B2, 2 -- l{'rl B21 ) tt -_- */_k'rOY0

+ (A21 - /f,.1A1] + Ao,,K,q) ZJl
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-- v + Yl
[n-p+mo [(rl

'It --" -- FX

Partitioning F along the lines of x: F = IF1, F2], and with the usual definition of recovery error:

it works out that:

with:

_r(S) = !_2 (S[ -- A T -_- [(rCr) -1 (B r - ](rDr)

[ ]'2,02 Dr : D21'°
A,. = A22, BT = B1,2, CT = Aa2 ' Bl,x

Minimizing MT is equivalent to finding a state feedback matrix of the transposed system to minimize

the responses--the same form as for the full order estimator.

A straightforward LQ/Ricatti solution yields the appropriate observer gain matrix which then

must be plugged in Co tile above equations to generate a. dynamic compensator.

e Recovery Error

500

250

125

62.5

0.9555

0.9007

0.9135

1.0012

Again, looking at these values of the recovery error, as well as plots of the yaw rate command

response (which does not necessarily improve with decreasing e), the value of 250 was settled upon.

Note that for less than this value, the recovery error does indeed start, to rise from this point.

Consider that the recovery error presented in the table is no longer just the magnitude of the M(s)

matrix. The eigenvalues of the closed loop system corresponding to the e = 250 design are shown

in Table 7. Although the order of the system has been reduced by 10, the performance is somewhat

dismal. More detail can be seen in the controller activity and recovery error singular value plots

(see figures 19 and 20. One can see fi'om these the large (and perhaps unnecessary) increase in

activity for higher frequencies. This occurs even with the large values of e used.

Thus, again we seek a way of frequency weighting the error in the transposed system used to

generate the observer gains. A fair amount of trial and error led to using a corner of 0.2 rad/s on

all criteria for this system. This is probably much lower than what intuition would lead one to.

However, it is not very surprising in light of the experience with the frequency weighting on the

full order observer. However, the recovery errors are slightly better:

e Recovery Error

0.5

0.25

0.125

0.0625

0.7437

0.6915

0.6987

0.7421

Still, we have relatively large va.lues of e compared to a weighted full order system, though, in line
with intuition, they are somewhat smaller than before. The recovery error for the _ = 0.25 was best,

though the improvement does not get one near the residual errors for a shaped full state system.

In fact, it does not do better than an unweighted full order system. The corresponding eigenvalues

for this system are shown in Table 8. Singular value plots of the controller and the recovery error

are shown in figures 21 and 22.

Overall there seems to be a fairly high price to going to this reduced order observer structure.
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Poles Damping Preq(rad/sec)
-7.83040 + 51.6865i

.-9.38043 + 51.2638i

-12.4905 + 41.0027i

.-6.11002 4- 37.2574i

-12.7108 + 25.2826i

.-8.72514 -t- 24.6011i

.-24.5081 + 2.91104i

-24.519,5 4- 2.27973i

-3.71934 + 19.6099i

.-4.20761 4- 19.5369i

-19,3829

-17,5160

-6.90951 4- 4.91729i

.-5.98385 + 5.24203i

.-6.51433

.-3,75254 + 4.67419i

-5.79405 4- 0.39518i

.-4.65048

.-1.87052 4- 1.37995i

•-1.70573 4- 0.10905i

.-1.48464 4- 0.60051i

.-4.26079e-3 4- 6.65864e-3i

0.150

0.180

0.291

0.162

0.449

0.334

0.993

0.996

0.186

0.211

1.000

1.000

0.815

0.752

1.000

0.626

0.998

1.000

0.805

0.998

0.927

0.539

52.2762

52.1149

42.8630

37.7550

28.2979

26.1025

24.6804

24.6252

19.9595

19.9849

19.3829

17.5160

8.48063

7.95521

6.51433

5.99413

5.80751

4.65048

2.32446

1.70922

1.60149

7.90518e-3

Table 7: Reduced Order Observer Recovery, 2 Integral C.ontl'o[
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Figure 19: Recovery Error, Reduced Order Observer
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Figure 20: Controller Activity, Reduced Order Observer

Poles Damping Freq (rad/sec)

-8.80979 ± 52.3960i

-9.38043 4- 51.2638i

-16.1812 + 35.1029i

-6.11002 + 37.2574i

-14.0871 + 24.0717i

-8.72514 4- 24.6011i

-24.7999 4- 0.55088i

-24.5081 + 2.91104i

-20.5883 + 1.42024i

-2.25247 ± 20.2789i

-4.20761 + 19.5369i

-19.3829

-5.98385 ± 5.24203i

-6.5413.5 4- 0.58733i

-6.51433

-3.75254 4- 4.67419i

-4.72891

-4.65048

-1.87052 -4- 1.37995i

-1.70573 + 0.10905i

-1.48464 4- 0.60051i

-4.26079e-3 4- 6.65864e-3i

0.166

0.180

0.419

0.162

0.505

0.334

1.000

0.993

0.998

0.110

0.211

1.000

0.752

0.996

1.000

0.626

1.000

1.000

0.805

0.998

0.927

0.539

53.1315

52.1149

38.6528

37.7550

27.8907

26.1025

24.8060

24.6804

20.6373

20.4037

19.9849

19.3829

7.95521

6.56766

6.51433

5.99413

4.72891

4.65048

2.32446

1.70922

1.60149

7.90518e-3

Table 8: Reduced Order Observer Recovery, 2 Integral Control, Weighted
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5.3 Numerical LTR I: 8th Order Design

Aside from the structured observers, one can formulate a compensator with dynamics whose states

do not necessarily have any analogues with observer states. This direct optimization, run through

the program SANDY [1], will optimize a controller design given a general structure for it. In this

case, we specify that it be 8th order in a series of 4 uncoupled 2nd order systems. The initial values

for the direct feedthrough matrix on this controller correspond to those corresponding columns of

the full state feedback matrix. The general control structure is as follows:

dc

Bc

_I c

D C

0 1 0 0 0 0

A21 A22 0 0 0 0
0 0 0 1 0 0

0 0 A43 A44 0 0

0 0 0 0 0 1

0 0 0 0 A65 A66

0 0 0 0 0 0

0 0 0 0 0 0

Blp Blq /31,. Blu Blv Blw

B2p B2q B2T B2u B2v B2w

B3p Baq BaT Bau Bay B3w

B4p B4q B4,. B4u B4v B4w

Bsp Bsq Bsr Bs,, Bsv Bsw

B6p Be,,;, Be,,. Be,,, Be,,., BG_,

Brv Brv Br,. Br,, Brv Br,,,

Bsp Bsv BaT Bs,, Bsv B8_,

C_50 1 C'60 2 C80 3 6'8 0 4 C6o 5

C_1 C+_2 C_+3 C,s_4 C_s
C_sl @,2 C5s3 C8,4 @,5

Ka0v K_0v K_0r Ke0u

/(Sd) KS_q KS_r /(Gu

Ka,v Ka+v Kes,,. K<+,,

Ka,,.v K_,_q ti_,< K#,,,,

0 0

0 0

0 0

0 0
0 0 ;

0 0

0 I

A8r A88

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

C,'_oe, C'So7

C:_¢6 C,s_r

C,5+r
Cat,-6 C,s,, r

K6o, Kao,_

K6_v I(5,:tv

KGv K&w

K,St,.v ]'i'at,.w

(7608 1

C'G8

CGs

C6tr8

K6oO K&cb

KS_O K6,_¢

Kes+o K+,_

1s25..0 1(6._¢

t( o f O K+of +

Kscfo K6+f¢

tQ, f o t'(s+f ¢

]%,.fo ];s,,.f+

Of course, the values marked with a 0 remain 0. The rest are allowed to optimize including the

state feedback gains noted in the D,. matrix. This still amounts to a hefty number of parameters:

104 of them. It turns out that the feedthrough gains associated with states that turn out to be

directly measured (i.e., pitch, roll, etc.) have a significant impact on the recovery. Optimization

of these gains from their state feedback values provides for a significant amount of the recovery.

Thus, an analogy fi'om the Ricatti-based solutions does not hold here--we are indeed changing the

supposed state feedback gain matrix K. The recovery error is 0.16374, which is the best recovery

of all systems. This is remarkable, considering the simple dynamics structure. Later on one will

see the limits to optimizing the direct feedthrough gains associated with just the observed terms.

This optimization perhaps could be improved upon as some analysis indicates that some further

improvement could be made, however some current algorithndc difficulties have prevented it. The

full state feedforward gains were used, as attempts to structure around their use did not seem to

work (see figure 23). It would have seemed that recovery error could have been improved by the

additional degrees of freedom, but the results seemed to indicate otherwise. This optimization
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Zero

-9.37520 + 49.7002i

-47.5601

-6.58311 + 37.7641i

-10.4636 + 27.2017i

-20.6436 + 12.9692i

-23.4432 :i: 2.81882i

-3.74904 + 19.5247i

-11.2690 k:: 11.8710i

-15.9453

-4.30385 + 6.15915i

-5.44168 + 4.74486i

-6.95416 + 1.78549i

-5.61014

-2.05374 + 1.28164i

-1.63643 + 0.73012i

-1.50904 + 0.12381i

-4.25281e-003 + 6.68477e-003i

Damping Freq (Hz)

0.185

1.000

0.172

0.359

0.847

0.993

0.189

0.688

1.000

0.573

0.754

0 269

1.000

0.848

0.913

0.997

0.537 7.92292e-003

50.5767

47.5601

38.3336

29.1448

24.3795

23.6121

19.8814

16.3680

15.9453

7.51387

7.21980

7.17971

5.61014

2.42084

1.79192

1.51411

Table 9: Poles of 8 State LTR Optimized Controller and Plant
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Figure 23: LTR for Output Feedback Controller C(s), No l(ff (not used)
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proceededwith filtereddisturbanceinputs.The pitch androll commanddisturbanceinputswere
integrated,thenpassedthrougha filter with a time constantof 8 rad/sec. The verticalrate and
yawrate commandinputs werepassedthrougha filter with a time constantof 4 rad/sec. These
filters werealsoappliedin thesubsequentSANDY basedLTRoptimizations.

Thereis nocontrolpenaltyR on anLTR-baseddirectoptimization.Sinceit standsto reason
that oneis trying to recoverastatefeedbackdesign,oneneedsto beableto freelyvary thenecessary
gains. Ricatti-basedLTR theory indicatesa needfor somegainsto go to infinity, Fortunately
most optimizationschemeswill detectan extremelack of sensitivity of tile costfunction value
to a parameterchange:the parameterwill probablynevermoveveryfar beforethe optimization
completesandterminates.Suchhasbeentheobservedbehaviorhere.

Thedisturbanceresponsepenaltyaffectedthemean-squaredvalues.Notethat here,asopposed
to the closedform Ricatti solutions,one couldminimizethe actual error rather than a matrix
analogousto someerrormultiplier matrix M(s). The value for the response penalty matrix Q, for

all direct LTR optimizations was:

Q = di39{0.1,0.05,2, 1,1,2, 1,0.2, 1,0.2}

The entries corresponded to the outputs {p, q, r, u, v, w, ¢, 0, f 0, and f 0 }.

5.4 Numerical LTR II: 4th Order Design

How much worse do the results get if the dynamics in the controller is lowered to 4th order? In a

word, not nmch worse--a recovery error of 0.17105. With the overall structure otherwise the same,

an interaction term between the pair of second order systems was allowed. This was intended to

Zero Damping Freq (tlz)

-464.184

-8.95655 + 51.1120i

-6.90773 -4- 37.0939i

-7.07229 + 25.5506i

-24.1159 + 2.94300i

-4.51612 4- 19.8662i

-20.2458

-5.75452 + 5.30307i

-2.82475 + 5.70997i

-4.12753 4- 5.42571i

-6.75926

-2.12814 + 2.73388i

-1.38437 + 1.13227i

-1.72118

-1.57803 -4- 0.61632i

-1.12528

-4.2532e-003 4- 6.68453e-003i

1.000

0.173

0.183

0.267

0.993

0.222

1.000

0.735

0.443

0.605

1.000

0.614

0.774

1.000

0.931

1.000

0.537

464.184

51.8908

37.7316

26.5114

24.2948

20.3731

20.2468

7.82541

6.37048

6.81724

0.75926

3.46455

1.78844

1.72118

1.69411

1.12528

7.92290e-003

Table 10: Poles of 4 State LTR Optimized Controller and Plant

make the dynamics a little richer to see if this would allow results nearly as good as those for the

8th order system. Because the size of this controller was minimal it was felt that some extra effort

needed to be made to see if this controller would achieve a level as good as any other system. These
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interactionterms-fromtheoutput of onesecondordersystemto the input of the othermadethe
designof the controllermatrix look like:

AC

0 1 0 0

A21 A22 A23 0

0 0 0 1

A41 0 A43 A44

Since the cost (needing to optimize only 2 more variables) was low, this was done.

5.5 Numerical LTR III: 0th Order Design

Finally, one asks, is there a need for dynamics at all? What about feeding tile output directly back'?

This time the direct feedthough matrix is all there is, so one will begin with using the state feedback

gains and try to optimize it further. Analyzing results with just state feedback gains applied to

the measured output, we see what one can expect in the least. The recovery error is 6.1807, with

the accompanying suite of system eigenvalues as seen in table 11. While the performance is not

horrible, it does not keep the response within any sort of acceptable tolerance. The eigenvalues of

the system (Table 11) still indicate a well stabilized system. If one optimizes this D matrix via

Zero Damping Freq (ilz)

-9.49008 ± 51.5146i

-5.48053 ± 33.7356i

-7.55594 ± 24.5267i

-24.3200 ± 2.76144i

-4.68312 ± 20.9348i

-19.7090

-i0.4723

-5.46663 ± 5.15352i

-3.40089 ± 5.46878i

-2.20360 ± 2.52614i

-1.80756

-1.47456 ± 0.83193i

-1.34444 ± 0.50772i

-4.10885-003 ± 6.72672e-003i

0.181

0.160

0.294

0.994

0.218

1.000

1.000

0.728

0.528
0.657

1.000

0.871

0.936

0.521

52.3815

34.1778

25.6642

24.4763

21.4522

19.7090

10.4723

7.51284

6.44000

3.35220

1.80756

1.69305

1.43711

1.25451e-003

Table 11: Poles of Utt-60 Stabilized With Selected State Feedback Gains

SANDY, the recovery error improves dramatically to 1.2489. While this is still not as good as the

optimized LTR designs with dynamics, it is not so far off of a Luenberger LTR design. Technically

there are dynamics even with this design in the form of the integrators.

Looking at the plot of recovery error maximum singular values (figure 24), one will see that the

error at lower frequency is actually better for the 0th order controller. It, is believed that this is

a function of how well the optimization did. Because there were many fewer parameters to move,

the relative strength of the optimization was probably better. Ilopefully future work will improve

technique to allow opitmization to the same degree on the 8th and 4th order designs. Because of

the lack of internal dynamics, the error was worse than the 8th and 4th order designs for frequencies

in the 1-10 rad/sec range.
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Zero Damping Freq (Hz)

-9.78679 ± 51.4210i

-2.09033 + 35.1811i

-7.35643 + 24.4792i

-24.2160 + 3.31615i

-5.59656 + 19.3922i

-20.0660

-3.54972 + 6.16242i

-5.86258 + 5.18050i

-6.71038

-2.87716 + 4.32472i

-1.15676 + 0.77973i

-1.10283 + 0.67672i

-1.70616

-4.10885-003 ± 6.72672e-003i

0.187

0.059

0.288

0.991

0.277

1.000

0.499

0.749

1.000

0.554

0.829

0.852

1.000

0.521

8.33081

5.60912

4.06810

3.89007

3.21233

3.19360

1.13186

1.24515

1.06799

0.82671

0.22202

0.20593

0.27154

1.25451e-003

Table 12: Poles of 0 State LTR Optimized Controller and Plant

1.4

1.2

o
1 i

° \>.

0.8 \
o.O \,

•_ 0.6 \

0.4

0.2

0
10-2

Results for Various Order Controllers

i e i i e iI Li i 1 i A i _ _ AI 1

10-1 100

Frequency (rad/s)

101 102

Figure 24: Recovery Error, 8th, 4th and 0th Order

30



30

25

o

20

= 15
e-

o_.,_

10

5

0
10-2

Results for Various Order Controllers

10-] 100 101 102

Frequency (rad/s)

Figure 25: Controller Activity, 8th, 4th and 0th Order

6 Direct Optimization for a 2 Integral State System Controller

What is tile difference between LTR and a direct optimization? Formwise, the compensator struc-

ture is identical to that of the 4th order LTR design:

AC

BC

CC

DC

0 1 0 0

A21 A22 A23 0

0 0 0 1

A41 0 A43 A44

Ba, B]q B],. B],,

B2p B2q B2r B2u

B3p /_3q B3," B3u

B4t) /_4q B4r B4¢,

C<I 6;02 C;03

C&_ Cs_2 C 5c3

C_1 Cs,2 6;,3

C&,.1 Cot,.2 C6tr3

KSop 1£5oq 1£5or

Ks_p K6cq I'(,6cr

I'(.6_p I'(Ssq I(8_r

I(8t,.p Ks_q I£8t_r

B1 _.,

B2v

1_3v

B4v

(--'604

C;_4

(26, 4

C8t,.4

l(6ou

I(-&u

IQ_ u

Blw 0 0 0 0

B2u, 0 0 0 0

B>,, 0 0 0 0

t_4w 0 0 0 0

K_o_ K_o,,, K_oo K_o¢ K_o f O Kso f ,_

Ks_ K<_, gs, o K_ Ks, re K_, f ,

K:gtrV K?JtrW, Kat,O KatrO Ka,,. f o Ks,, Jo

The disturbance inputs, while filtered as before, will influence the dynamics in a significantly

different way. The feedforward matrix normally used is based on the full state feedback design--

these are the gains used to translate a vertical rate command into commands on the actuators. With

this design, the yaw rate and vertical rate disturbances are summed into the signals going from the
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sensors to the controller itself--no "recovery" to a set of full state feedback gains is implied (see

figure 26). The pitch and roll commands, as before, go into the integrators (no direct feedthrough

UH-60 Plant

gs

\5
-/

Figure 26: Direct Optimization for Output Feedback Controller C(s )

gains around these integrators). Because there is no direct comparison with the original state

feedback design feedforward, one cannot look at residuals between the two systems in a meaningful

way. The overall recovery process appears somewhat sensitive to the feedforward gains. One can,

however, look at the basic responses of this closed loop system and judge how well the optimization

went. In fact, because there exists a 4th order LTR design with the same structure a comparison
to it will be useful.

The largest source of difficulty was in choosing the relative weighting of control versus criterion.

Classically, one worked for the fastest adequate response time versus having unreasonable gains or

a large overshoot. The weighting matrices had values as shown in tables 13 and 14. Considering

Q for State Q for Optimized Factor

Feedback Output Feedback Weighted

1

0.1

1.6

2

10

6

16

30

Blendofi 0.25q + O + f O dt

Blend of: 0.2p + ¢ + f ¢ dt
Yaw Rate r

Vertical Rate w

Table 13: Diagonal Values of Q and Corresponding Factors

how this design had some high frequency components and overshoot, the difference in weights from

the LQ to the direct design is significant. The resulting eigenvalues are shown in Table 15. From

previous experience, one can see that the eigenvalues do not say much by themselves. Looking at.
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R for State R for Optimized Factor
Feedback Output Feedback Weighted

10
1
1
1

0.4
1
1
1

Collective6o
Sineas

Cosine5_

Tail Rotor 5TR

Table 14: Diagonal Values of R and Corresponding Factors

Zero Damping Freq (Hz)

-470.046

-115.173

-9.39606 + 51.4281i

-2.85548 + 35.6182i

-30.9068

-8.59788 + 26.2384i

-24.2882 + 3.56569i

-5.44497 ::i: 19.9205i

-17.0312

-1.23462 + 8.68975i

-3.91763 + 6.12717i

-2.88111 ::t: 3.14284i

-3.07029 + 1.37917i

-3.74960

-1.34781 + 0.58055i

-1.46438

-0.33784

-3.96107e-003 + 6.69608e-003i

1.OOO

1.000

0.180

0.080

1.000

0.311

0.989

0.264

1.000

0.141

0..539

0.676

0.912

1.000

0.918

1.000

1.000

0.509

470.046

115.173

52.2794

35.7325

30.9068

27.6112

24.5486

20.6512

17.0312

8.77702

7.27255

4.26359

3.36583

3.74960

1.46753

1.46438

0.33784

7.77995e-003

Table 15" Poles of 4 State Direct Optimized Controller and Plant
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Figure 27: Controller Activity, non-LTR Optimization

the controller activity (see Figure 27), one can see that it starts out with a fairly large gain at low

frequencies and increases a. modest relative amount as one goes up in frequency. Considering tile

command response plots (figures 28 to 31, this extra controller activity is apparent in the faster

response times (and overshoots) for pitch and roll along with the appearance of high frequency

components in the responses. Other than this, there seem to be other differences with the LTR

design, in that the direct optimization performed better in keeping the yaw rate and up rate near

zero in the pitch and roll commands, as well as mitigating actuator use in the yaw rate and up rate

commands. Note that while the rise time of the direct optimization response for the pitch and roll

commands was better, the delay time was the same.

The Bode plots do not add much to the insights already learned aside from reinforcing the

fact that the roll0ff is lower on the direct design. Because the phase also moves more slowly the

difference in robustness may only be slight.

7 Conclusions

Though one could directly optimize a controller, the LTR procedure is in itself usefld combined with

the numerical optimization as the process derives a best case controller (versus full-state feedback)

as well as a feel for a particular plant model behavior. Though Q and R will almost always be dealt

with as diagonal matrices, developing the weightings for a proper controller design is one of the

more difficult parts of the design--this development is sped up considerably given the availability

of a full state design with which to explore the various effects.

Recovering to a design (though it be to an unrealizable full state one in general) is well defined

within a numerical LTR. Though the weighting matrix on the controls is zero, the gains do not

tend to blow up (an optimization process would be hard pressed to do this). Having a full state

design to recover to (as opposed to a direct optimization to the best possible conloroller) represents
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METHOD ERROR
Full StateObserver(Unweighted)
Full StateObserver(Weighted)

ReducedOrderObserver(Unweighted)
ReducedOrderObserver (Weighted)

8th Order Numerical LTR

4th Order Numerical LTR

0th Order Numerical LTR

0.4359

0.2746

0.9007

0.6915

0.1637

0.1711

1.2489

Table 16: Overall List of Recovery Error versus Method

a continual design check--a sort of quality control. This is necessary as one may need to restart

the optimizer to avoid some local minimum. In addition the LTR numerical solution may provide

a good starting point for the direct optimization.

Using the appropriate entries of the fllll state feedback gain matrix for the feedforward fi'om the

yaw rate command and up rate command to the actuators may be restrictive enough to affect the

resulting controller. It appears that LTR does not work if these conamands were inserted between

the sensor output and the controller input as in the direct optimization (see Figure 26). Fortunately

this is not an issue with the pitch and roll commands as the feed into the error integrators is the

same in both LTR and the direct case.

What would be the advantages and disadvantages of integral control on r and w? The process

of recovery may actually be made easier; however, the full state feedback design would probably

not have as good a response time as with a non-integral design. This sort of tradeoff may have to

be made in making the decision as to what kind of mission one intends with this helicopter.

Other future exploration should include a test of the robustness of this controller to deviations

about the hover flight condition. Ideally the gain scheduling from flight condition to flight condition

should result in a fairly even performance across the envelope-especially at. a midpoint between

flight conditions.

Further improvements to the numerical algorithms to combine robustness to defective matrices

and the speed of the diagonal algorithms is also pending. Routine use of a robust form of optimiza-

tion gradient calculation may improve the numerical results seen in this paper. The LTR process

tries to recover a state feedback design with an output feedback design--therefore it is inevitable

that various eigenvalues, one set from the closed loop state feedback design, one set fl'om the re-

covery design, will overlap. Chances are this overlap will result in a defective set of eigenvalues.

Currently this roadblock is overcome only by going to the much slower robust form.
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